skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brawn, Jeffrey D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In a hybrid zone between two tropical lekking birds, yellow male plumage of one species has introgressed asymmetrically replacing white plumage of another via sexual selection. Here, we present a detailed analysis of the plumage trait to uncover its physical and genetic bases and trace its evolutionary history. We determine that the carotenoid lutein underlies the yellow phenotype and describe microstructural feather features likely to enhance color appearance. These same features reduce predicted water shedding capacity of feathers, a potential liability in the tropics. Through genome-scale DNA sequencing of hybrids and each species in the genus, we identifyBCO2as the major gene responsible for the color polymorphism. TheBCO2gene tree and genome-wide allele frequency patterns suggest that carotenoid-pigmented collars initially arose in a third species and reached the hybrid zone through historical gene flow. Complex interplay between sexual selection and hybridization has thus shaped phenotypes of these species, where conspicuous sexual traits are key to male reproductive success. 
    more » « less
  2. ABSTRACT Current and near future climate policy will fundamentally influence the integrity of ecological systems. The Neotropics is a region where biodiversity is notably high and precipitation regimes largely determine the ecology of most organisms. We modeled possible changes in the severity of seasonal aridity by 2100 throughout the Neotropics and used birds to illustrate the implications of contrasting climate scenarios for the region's biodiversity. Under SSP‐8.5, a pessimistic and hopefully unlikely scenario, longer dry seasons (> 5%), and increased moisture stress are projected for about 75% of extant lowland forests throughout the entire region with impacts on 66% of the region's lowland forest avifauna, which comprises over 3000 species and about 30% of all bird species globally. Longer dry seasons are predicted to be especially significant in the Caribbean, Upper South America, and Amazonia. In contrast, under SSP‐2.6—a scenario with significant climate mitigation—only about 10% of the entire region's forest area and 3% of its avifauna will be exposed to longer dry seasons. The extent of current forest cover that may plausibly function as precipitation‐based climate refugia (i.e., < 5% change in length of dry periods) for constituent biodiversity is over 4 times greater under SSP‐2.6 than with SSP‐8.5. Moreover, the proportion of currently protected areas that overlap putative refugia areas is nearly 4 times greater under SSP‐2.6. Taken together, our results illustrate that climate policy will have profound outcomes for biodiversity throughout the Neotropics—even in areas where deforestation and other immediate threats are not currently in play. 
    more » « less
  3. null (Ed.)
    Synopsis Many animal species have evolved extreme behaviors requiring them to engage in repeated high-impact collisions. These behaviors include mating displays like headbutting in sheep and drumming in woodpeckers. To our knowledge, these taxa do not experience any notable acute head trauma, even though the deceleration forces would cause traumatic brain injury in most animals. Previous research has focused on skeletomuscular morphology, biomechanics, and material properties in an attempt to explain how animals moderate these high-impact forces. However, many of these behaviors are understudied, and most morphological or computational studies make assumptions about the behavior without accounting for the physiology of an organism. Studying neurophysiological and immune adaptations that covary with these behaviors can highlight unique or synergistic solutions to seemingly deleterious behavioral displays. Here, we argue that selection for repeated, high-impact head collisions may rely on a suite of coadaptations in intracranial physiology as a cost-reducing mechanism. We propose that there are three physiological systems that could mitigate the effects of repeated head trauma: (1) the innate neuroimmune response; (2) the glymphatic system, and (3) the choroid plexus. These systems are interconnected yet can evolve in an independent manner. We then briefly describe the function of these systems, their role in head trauma, and research that has examined how these systems may evolve to help reduce the cost of repeated, forceful head impacts. Ultimately, we note that little is known about cost-reducing intracranial mechanisms making it a novel field of comparative study that is ripe for exploration. 
    more » « less